Mitochondrial Oxidative Stress Significantly Influences Atherogenic Risk and Cytokine-Induced Oxidant Production
نویسندگان
چکیده
BACKGROUND Oxidative stress associated with cardiovascular disease (CVD) risk factors contributes to disease development. However, less is known whether specific subcellular components play a role in disease susceptibility. In this regard, it has been previously reported that vascular mitochondrial damage and dysfunction are associated with atherosclerosis. However, no studies have determined whether altered mitochondrial oxidant production directly influences atherogenic susceptibility and response in primary cells to atherogenic factors such as tumor necrosis factor-α (TNF-α). OBJECTIVES We undertook this study to determine whether increased mitochondrial oxidant production affects atherosclerotic lesion development associated with CVD risk factor exposure and endothelial cell response to TNF-α. METHODS We assessed atherosclerotic lesion formation, oxidant stress, and mitochondrial DNA damage in male apolipoprotein E (apoE)-null mice with normal and decreased levels of mitochondrial superoxide dismutase-2 (SOD2; apoE(-/-) and apoE(-/-), SOD2(+/-), respectively) exposed to environmental tobacco smoke or filtered air. RESULTS Atherogenesis, oxidative stress, and mitochondrial damage were significantly higher in apoE(-/-), SOD2(+/-) mice than in apoE(-/-) controls. Furthermore, experiments with small interfering RNA in endothelial cells revealed that decreased SOD2 activity increased TNF-α-mediated cellular oxidant levels compared with controls. CONCLUSIONS Endogenous mitochondrial oxidative stress is an important CVD risk factor that can modulate atherogenesis and cytokine-induced endothelial cell oxidant generation. Consequently, CVD risk factors that induce mitochondrial damage alter cellular response to endogenous atherogenic factors, increasing disease susceptibility.
منابع مشابه
EEffects of nano-curcumin and curcumin on the oxidant and antioxidant system of the liver mitochondria in aluminum phosphide-induced experimental toxicity
Objective(s): Aluminum phosphide (AlP) is commonly used pesticide which could cause poisoning mainly through the induction of oxidative stress. The present study aimed to evaluate the effects of nano-curcumin and curcumin on the oxidant and antioxidant system in the liver mitochondria using AIP-induced toxicity model.Materials and Methods: In this study, 36 male albino Wistar rats were ra...
متن کاملاثر محافظتی نانوسریا در جلوگیری از آسیب میتوکندریایی در جنین موش های سوری دیابتی شده با استرپتوزوتوسین
Background and purpose: Gestational diabetes is known as increasing blood glucose level for the first time during pregnancy. Mitochondrial damage and oxidative stress are the most important factors in the development of diabetic complications. Cerium nanoparticles have antioxidant properties. In this study we examined the protective effect of nanoceria in preventing mitochondrial damage induced...
متن کاملMitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis
Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atheroscler...
متن کاملCurcumin Ameliorates Sodium Valproate Induced Neurotoxicity through Suppressing Oxidative Stress and Preventing Mitochondrial Impairments
Background and purpose: Curcumin is a natural polyphenolic compound in turmeric (Curcuma longa). Curcumin has potent free radical scavenger and antioxidant properties that could significantly reduce oxidative damage. Oxidative stress and mitochondrial dysfunction contribute to valproate sodium induced tissue damage. This study investigated the protective effects of curcumin against valproate so...
متن کاملExercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart.
Evidence suggests that mitochondrial dysfunction and oxidant production, in association with an accumulation of oxidative damage, contribute to the aging process. Regular physical activity can delay the onset of morbidity, increase mean lifespan, and reduce the risk of developing several pathological states. No studies have examined age-related changes in oxidant production and oxidative stress...
متن کامل